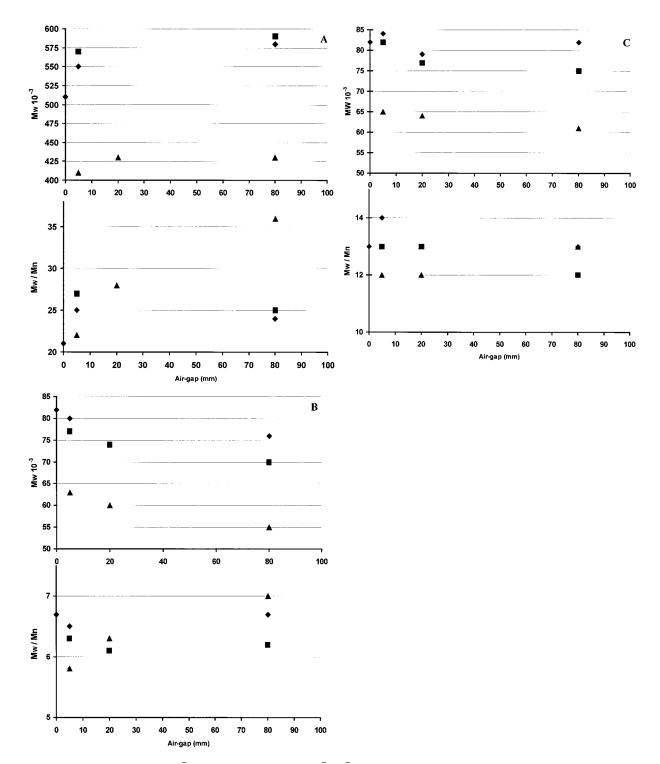
ERRATUM


Degradation of Polyethylene During Extrusion. II. Degradation of Low-Density Polyethylene, Linear Low-Density Polyethylene, and High-Density Polyethylene in Film Extrusion

Thorbjörn Andersson,¹ Berit Stålbom,² Bengt Wesslén³

¹Department of Material Development, Tetra Pak Research & Development AB, SE 221 86 Lund, Sweden ²Department of Material Characterisation, Tetra Pak Research & Development AB, SE 221 86 Lund, Sweden ³Polymer Science and Technology, Lund University, SE 221 00 Lund, Sweden

(Article in J Appl Polym Sci 2004, 91, 1525-1537)

When this article was published, Figure 5 was printed incorrectly. It is shown here (see next page) in its correct form.

Figure 5 (A) Molecular mass (\bar{M}_w) and polydispersity (\bar{M}_n/\bar{M}_w) for LDPE as function of exposure time, air gap, and extrusion process temperature (\diamond 260, \blacksquare 280, and \diamond 325°C). The value at 0 mm air gap represents the starting material. (B) Molecular mass (\bar{M}_w) and polydispersity (\bar{M}_n/\bar{M}_w) for LLDPE as function of exposure time, air gap, and extrusion process temperature (\diamond 260, \blacksquare 280, and \diamond 325°C). The value at 0 mm air gap represents the starting material. (C) Molecular mass (\bar{M}_w) and polydispersity (\bar{M}_n/\bar{M}_w) for HDPE as function of exposure time, air gap, and extrusion process temperature (\diamond 260, \blacksquare 280, and \diamond 325°C). The value at 0 mm air gap represents the starting material. (C) Molecular mass (\bar{M}_w) and polydispersity (\bar{M}_n/\bar{M}_w) for HDPE as function of exposure time, air gap, and extrusion process temperature (\diamond 260, \blacksquare 280, and \diamond 325°C). The value at 0 mm air gap represents the starting material.